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In Part I a singularity method-also called boundary integral eqnation method or panei 
method-has been developed. It is applicable especiaily to highly transient internal flow 
problems with any three-dimensional geometry including walls wetted on both sides. The 
boundary conditions are prescribed in terms of pressures and/or accelerations. The method 
is primariIy based on a recently developed dipole element treatment for incomprcssibfe 
fluids. Such elements (panels) can be fitted to the fluid boundary or any enveloping samface. 
Also, point sources may be included. The applicability of the method is demonstrated by 
two different examples: the incipient flow in a T-joint and the oscillating flow in the pressure 
suppression system of a boiling water reactor. In Part II the coupling of the transient flow 
problem with the dynamic behavior of the surrounding structure will be investigated, 

1. INTR~DUCTIQN 

Future advanced safety criteria of large technical systems will, In many cases, 
reqGre a catastrophic failure to be ruled out even in cases with postulated failures of 
single components. As a consequence, the impact of a failing structural member on the 
other parts of the system must be thoroughly mvestigated. In many cases tbesc 
structural members are surrounded by fluid which takes part in the dynamic processes.. 
Thus, there is an increasing demand for analysis methods for complex mechanical 
systems including fluid fields and structural members, both under highly transient 
conditions. 

Various applications for such advanced investigations arise from problems in 
nuclear reactor safety. Examples are the seismic loading of fluid containers, rapid shut 
off in coolant circuits, the postulated breach of a coolant circuit with subsequenr 
loading of pressure vessel internals, and the steam condensation in the pressure 
suppression system of a boiling water reactor. 

In this part of the paper a singularity method1 is presented which is applicable to 
the fluid dynamics aspects of the above problems. Bn Part II the fluid dynamic mtldel 

1 Methods of this type are also known under the term ‘boundary integral equation method (RIE)” 
or “panel method.” 
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is integrated into the mathematical description of the structural response in order to 
account for the mutual dependency-called coupling-between fluid and structural 
dynamics. In this way the conditions for both the fluid and the structural dynamics are 
simultaneously satisfied. 

In order to demonstrate the applicability of the singularity method the incipient 
flow in a T-joint with rectangular cross sections is investigated. Another, more 
detailed example is the waterpool of the above-mentioned pressure suppression system. 

2. DEFINITION OF THE PROBLEM 

The fluid dynamic parts of those problems which have been referred to in Section 1 
may be characterized as follows: 

-highly transient flow fields 
-almost arbitrary three-dimensional flow fields, especially internal flow problems 

with thin walls wetted on both sides 
-boundary conditions with prescribed normal velocities (Neumann type) or with 

prescribed pressures (free fluid surface, Dirichlet type). 

Furthermore, the mathematical description for the fluid dynamics must be useful 
as a basis for a solution procedure in coupled problems in Part II of this paper. 

In order to solve the fluid dynamics problems defined above, some restrictions are 
necessary or advisable: 

-Displacements of the fluid boundaries must be small in comparison to character- 
istic dimensions of the fluid field. 

-The dynamic pressures due to the fluid velocity at a fluid boundary with prescribed 
pressures must be small in comparison to characteristic pressure differences of the 
system. 

-I3ody forces, for instance gravity forces, cannot be taken into account. (However, 
by applying the technique of fluid structural coupling surface waves can be modeled.) 

-The fluid viscosity must be negligible. 
-The fluid compressibility must be negligible and the fluid density must be 

constant. (However, by applying the technique of fluid structural coupling the fluid 
compressibility may be roughly approximated by additional artificial boundary 
flexibilities.) 

-Fluid rotations must be negligible. 

In contrast to steady-state flow problems the neglect of the fluid viscosity in 
transient flow problems seldom introduces large errors for two reasons. First, at each 
fluid point the viscosity force must be compared not only with the convective inertia 
(as in the case of steady-state flows), but also with the local inertia which is propor- 
tional to the transient flow changes. Second, most transient problems concern 
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incipient flows with lower velocities than in corresponding steady-state problems. 
Furthermore, viscosity elects are usually proportional to the square of the velocities, 
Consequently, if potential flow theory (flow without viscosity) is adequate for many 
steady-state problems, as indicated in the next section, it will be even more adequate 
for highly transient problems. 

More questionable is the neglect of the fluid compressibility. For steady-state flows 
this means that the Mach number must be sufficiently small (accordi~~g to [3] 
smaller than 0.5). For transient flows it means, in addition, that the ~ro~agat~o~ 
velocity of compression waves (velocity of sound) is assumed to be infinite (Surface 
waves or wave effects due to flexible boundaries, which are important in the case of 
coupled problems, are not directly affected.) In other words, the time necessary for a 
compression wave to traverse the fluid region is neglected. f this time is small in 
camparison to the times for the transient flow changes, then the above assumption is 
justified [I ]. 

3. BASIC CQNCEPT OF TEE SINGULARITY BTHOD 

Under the assumptions of Section 2 the three-dimensional flow and pressure fields 
of the problem may be generated by superposition of elementary flow and pressure 
fields which can be described by simple analytical functions. Examples for such 
elementary fields are source flaws, dipole flows, or-more general-flows due to 
singularities. Now, assuming that these singularities may be distributed aver the flui 
field boundary or any other given boundary enclosing the fluid region, the intensity 
distribution for the singularities can be found by satisfying the boundary conditions. 
This requires the solution of an integral equation. The unknowns occurring here 
refer only to the fluid boundary. For numerical solution the singularity distr~b~t~a~ is 
approximated by an appropriate arrangement of panels-sometimes also called 
hnite elements-with prescribed distribution shapes. As a consequence, the singtilarity 
distribution is described by a finite number of unknowns and the integral equation is 
reduced to one linear equation for each boundary point. In general a unique solution 
can be obtained, when the number of unknowns is the same as the rmmber of linear 
equations. Thus, an exact satisfaction of the boundary conditions can be achiel 
only at a finite rmmber of boundary paints. This is the basic concept of the singular 
method which will be used in this paper. A more general description may be found in 
contributions from Wait and Symm in [2]. 

The same basic concept is widely used in aerodynamics. 
papers including extensive applications have been published b 
A description of these works may also be found by Lack in 161. her ap~lica~~o~s in 
aerodynamics are reported, for instance, by Johnson and Rubb [7], by Medan IS], 
by Grodtkjaer [9], and by Korner and Hirschel [IQ]. Investigations of ship hulks and 
apphcations to submarine problems are reported by Ecer, Eichers, and 
by Albring and Schindler [12], and by Webster [I?]. 

All of these papers deal with external steady-state flow problems, namely. f!ows 
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around wings, fuselages, or ship hulls. Usually the applied singularities are 
sources uniformly distributed ,over plane triangular, or quadrilateral panels which 
approximately form the fluid boundary. One way to improve the accuracy of the 
method is the application of panels with curved surfaces (avoiding sharp corners 
between adjacent panels) in combination with linearly varying source distributions 
[5, 71, or the application of higher-order approximations as discussed by Argyris and 
Scharpf [14] or by Nedlec [15]. Another way to improve the accuracy is to distribute 
the singularities at a certain distance outside the fluid field [13, 16, 171. 

The situation is different for the so-called interior flow problems, i.e., flows in 
channels or containers, which are dealt with in this paper. Useful results have been 
obtained with point singularities in a certain distance from the fluid boundary by 
Holler [18], Landweber [19], and one of the authors [20]. But this method cannot 
be used for fluid fields with thin walls wetted on both sides, as required here, and there 
are, besides, some questions and difficulties concerning optimal locations of the 
singularities. On the other hand, applying a panel method with distributed sources 
at the fluid boundaries is impossible or unsuitable for three reasons. Again, thin walls 
wetted on both sides cannot be treated adequately, since fluid sources are not able to 
model a pressure step across the wall. Furthermore, considerable leakages at boundary 
edges are reported by Renken [21]. Finally, depending on the geometric details, 
internal flow problems have a larger tendency than external flow problems to yield 
ill-conditioned systems of linear equations. 

Therefore a modified singularity method has been developed, the numerical 
calculations are performed using a computer code called SINGl. As singularities 
so-called dipole elements are used. These are rectangular plane panels with uniformly 
distributed dipoles (or doublets). The dipole axes are perpendicular to the panels. 
The pressure field induced by such a dipole element is continuous over the whole 
space, except in the panel itself, across which a pressure step occurs. For this reason 
dipole elements are especially suitable for modeling the pressure differences at thin 
walls which are wetted by the fluid on both sides. Detailed investigations reveal 
another advantage: excessive leakages at boundary edges, which arise when source 
elements form the fluid boundary, do not occur. Finally, for dipoles the decay of 
pressure and velocity with increasing distance is one order higher than in the case of 
fluid sources. This fact seems to reduce the tendency to produce ill-conditioned 
systems of linear equations observed for internal flow problems treated by source 
elements. 

A disadvantage of dipole elements is that the analytical functions describing the 
pressure and velocity distributions are somewhat more difficult to handle than the 
corresponding distributions from the well-known source elements. For this reason, 
only rectangular, but not triangular, dipole elements are available in SINGl. 
Consequently, the discretization of curved fluid boundaries may create some 
difficulties. 

To overcome these difficulties, but also to allow for a flexible and economical 
treatment of the given problems, two additional options can be used in SINGl. 
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For fluid boundaries not generated by thin walls wetted on both sides the 
elements may be applied in a submerged version. This increases the smoothne 
the accuracy of the results, provided the distance between dipole element 
boundary is not too large. Moreover, the intensity of each dipole element ne 
introduced as an unknown of the system of linear equations. Instead several ~~te~s~t~es 
may be described by the same unknown or by the weighted mean of any four 
unknowns. This allows for an approximation of curved fluid bo~udar~es by a large 
number of rectangular panels. The number of unknowns, however, may be kept 
relatively small. 

In comparison to finite-difference methods, see for instance [Z&-24], the a~~~c~t~ 
of singularity methods offers some advantages: 

--Only the fluid boundary and not the whole t~ee~d~mens~ona~ Aui omain has 
to be discretized for numerical treatment. 

-Concentrating the discretization at the fluid boundary ailows for 
formulation of the boundary conditions. To gain similar advantages in 
applying finite-difference methods, curvilinear coordinate system 
having coordinate surfaces coincident with the fluid boundaries 

-Under the assumptions of inviscid and incompressible conditions an 
solution is obtained for boundary conditions which differ slightly from 
conditions. But these deviations are calculated as a part of the solution. Their average 
values over certain subregions of the fluid boundary vanish. 

-Since in this singularity method the fluid dynamic unknowns are related only to 
the fluid boundary, and this boundary largely coincides with the surfaces e 
surrounding structures, the development of solution techniques for coupled 
structural dynamics problems is facilitated. 

-A structural disadvantage inherent in the singularity method is that effects due 
to kid viscosity are neglected. Effects due to fluid compressibility may be rougher 
included if required. Furthermore, the fluid density must be uniform thro~gbo~t the 
whole fluid region. 

--However, the fact that in singularity methods it is primarily the flow co~d~t~~~s 
at the fluid boundary which are computed, turns out to be rather an advantage taco 
a disadvantage, since in most cases it is just these conditions which are of interest, 

4. FLUID IDYNAMIC EQUATIONS 

The field equations which govern an inviscid, incompressible fluid without sources 
and body forces are 

div 6 = 0 (continuity) 
and (4.1) 

g(5) = - jgradp (momentum), 
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where 5 is the velocity vector; T, time; p, density; p, (static) pressure. Introducing the 
total pressure P as a new variable 

using the identity 

P = p + +p9, (4.2) 

& (D) = g (6) + (57) 6 = 2 (5) + i grad fi2 - V x rot 5, 

and assuming 

rot C = 0, 

the basic equation can be stated as 

div 5 = 0 
(4.3) 

g + 5 grad P = 0. 

In these equations the unknowns fi and P appear linearly. Therefore the principle of 
superposition, which is the basic idea of the method of singularities, is applicable. 

It should be mentioned that this is not true for the unknowns 6 and p in Eqs. (4.1), 
since the time derivatives are related to local coordinate systems which are translating 
and rotating according to the velocity field 5. For different flow fields this means that 
the local coordinate systems translate and rotate in different ways. However, for 
superposition of different flow fields a major prerequisite is that the quantities to be 
superimposed must be related to the same coordinate system. 

In order to make use of the linearity of Eqs. (4.3) and to use the principle of super- 
position to solve the problem, the boundary conditions should also be linear functions 
of 5 and P. This is true for flow problems with boundaries represented by rigid walls 
(for instance the aerodynamic problems mentioned in Section 3), but not for flow 
problems with free fluid surfaces,2 where the pressure p and not the pressure head P 
is given. 

Fortunately, in many cases the velocities at free fluid surfaces are rather small, 
so that 

iiPfif2 <PO 9 

where & is the velocity vector at the free fluid surface and p. is the characteristic 
pressure difference occurring in the problem. Under this condition the term &pi?” is 
negligible at these boundaries and the prescribed pressures p may be simply approxi- 
mated by prescribed total pressures P. 

2 Here a $.-ee fluid surface is any fluid boundary with prescribed pressure. 
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In other cases with somewhat larger velocities at the free fluid surface, one or more 
computational steps may be added., where the approximation of the prescribe 
pressures p may be iteratively improved on the basis of the velocities at the free flui 
surface obtained in the preceding computational step. 

RESSURE AND ACCELERATION FIELDS DUE TO A RECTANGULAR 

The formulas describing the pressure and velocity distributions around a rectangular 
dipole are given in [27]. Here only some major steps in deriving these formulas are 

4n highly transient flow problems the fluid accelerations, rather than the v~~ociti~s~ 
are of primary interest. Therefore the acceleration vector Z 

a = aiqar (5.1) 

is introduced. It should be emphasized that for this definition wkicb is based on the 
partial, and not as usually on the total, time deirvatives, inertia forces are not 
proportional to the acceleration vector Zi. 

In order to present the solutions of the fluid dynamic equations (4.3) for a discrete 
source or a dipole surrounded by an infinite fluid, a spherical coordinate system r, I,& 
4 is introduced. The directions of the components ar, a*, a6 of the acceleration vector Z 
are shown in Fig. I. For a source S located at the origin of the spherical ~oor~~~~t~ 
system the pressure and acceleration fields are 

(5.2) 

Sink -----T SOkJPCfS 

RG. 1. Spherical coordinate system with a discrete source or dipole. 
I%. 2. Definition of the dipole 5?. 
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The dipole Tis defined as 

As shown in Fig. 2, a source and a sink, both of intensity S, are separated by distance 2i. 
According to these definitions the pressure and acceleration fields of a dipole T can be 
calculated by superimposing the corresponding fields due to both singularities with 
the distance vector a approaching zero. The results are 

p = p WaT 1 aTjaT i __- 
477 r2 

cos # - cos $b, a* = - - sin * * cos 4, 
4~ r3 

aT = 2 aTlaT 1 aTjar i -- 
47r r3 

cos 4 * cos 4, am = - - sin 4. 
4z- r3 

(5.3) 

Equations (5.2) and (5.3) are valid through the whole space except the coordinate 
origin, where the singularities, i.e., the source or the dipole, are located. By integration 
over the surface of a small sphere surrounding the dipole, a force can be found which 
is proportional to aTI&- and has the same direction as T. 

FIG. 3. Cartesian coordinate system with rectangular dipole element. 
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Now dipoles will be uniformly distributed over a plane rectangular element shown 
in Fig. 3, The dipole axes are perpendicular to the element. Field points are described 
by Cartesian coordinates EJ, 7, 5; points belonging to the plane rectangular dipole 
ePement are described by the coordinates 3, 5. The origin of both coordinate systems 
is located at the element center and the 71 and 5 axes and 5 and [ axes, respectively, 
are perpendicular to the element length P and element width +. The symbols a<, a”, a< 
denote the corresponding components of the acceleration vector 5. introducing 
dipole density 

d2T 
f=%-4 

and using appropriate formulas for coordinate transformatiou between the system Y, 
& d, and the system E, 7, 6, the principle of superposition yields 

After lengthy calculations the following, relatively simply, closed-form solutions for 
the pressure and acceleration fields due to the rectangular dipole element can 
found: 
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where the arguments t, $, <l, [, r2, c2, etc., relate to coordinate systems which are 
translated into the corner points 1,2,..., etc. of the dipole element. 

q1 = 7 + P”/& 

t1 = 5 + rV, 

q2 = rj - i”y2, 

i” = tl + Jv, 

q3 = 7 + rV2, 

5” = 5 - r5/2, 

rj4 = 7j - r”/2, 

5” = 5 - f-</2. 

The functions f 2, f c, f”, f r are defined as follows: 

f”(x, y, 2) = arctan YZ 
x(x” + y2 + z2)lj2 (principal value); 

m, YY 4 = yz(2x2 + Y2 + z”> 
(x” + y”)(x” + z2)(x” + y2 + z2y2 ’ 

f”k Ys 4 = 
-x2 

(x2 + y2)(x2 + y2 + zy ’ 

(5.7) 

fYx, Y, 4 = --xY 
(xx” + z2)(y2 + y” + zy2 * 

6. DISCUSSION OF THE FIELDS DUE TO A RECTANGULAR DIPOLE ELEMENT 

In order to study the properties of the pressure field described by Eqs. (5.6) the 
close environment of the plane c = 0 will be investigated. Defining the location of a 
field point by the angle CL, as shown in Fig. 4, the formula for the pressure can be 
approximated by 

P = (i - $) p g for / [ j << ri. (6.1) 

Based on this relation the following statements can easily be verified: 

-Approaching the dipole element from the half space ,$ > 0 the limit pressure is 

Approaching the dipole element from the half space t < 0 the limit has the opposite 
sign. However, for the plane f = 0 outside the dipole element, the pressure P vanishes 
(Fig. 5). 

Thus, within the dipole element a pressure step 

occurs which may be used to simulate pressure differences across thin walls wetted 
on both sides. 
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Edge of 
the Dip011 
l.zement 

Field 

Pressure Far from the Edge 
of the Dipole Element 

Pressure Close to the Edge 
of the Dipole Element 

Pressure Outside 
of the Dipo!e Element 

Infinite Tangential 
~~ce~erQtjon at 
the Element Edge 

FIG. 4. Coordinates of a field point close to the edge of a dipole element. 

FIG. 5. Pressure distributions perpendicular to the plane of the dipole element. 

FIG. 6. Two joining dipole elements with the angle ,B. 

FIG. 7. Accelerations at the dipole element. 
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-For two dipole elements having a common edge and the same dipole intensities 
but different orientations (Fig. 6), approaching the edge from opposite dipole direc- 
tions yields the limit pressures 

and approaching the edge from the other side, yields the limit pressure of 

P l$lP=(l -+g, 

so that also close to edges between two dipole elements, the pressure step within the 
elements is 

This is true even for elements with different dipole intensities. 
Also the equations for the acceleration vector close to the edge of the dipole 

element become very simple. Defining the location of a field point by the distance 1 Z j 
and the angle 01, as shown in Fig. 4, the acceleration vector has a value of 

,a,= 1 at 1 ---. 7r a7 121 

The direction is obtained by a clockwise 90” turn of the distance vector 2. 

From these findings it follows immediately: 
-Inside the dipole element the acceleration vector is perpendicular to the element 

plane. Approaching the edges of the dipole element the acceleration vector approaches 
an infinite value hyperbolically. However, at the edges the acceleration component 
perpendicular to the element plane vanishes and an infinite component tangential 
to the element plane (and perpendicular to the element edge) occurs (Fig. 7). 

It follows that in the edge region of the dipole element the acceleration perpendicular 
to the element plane has a vanishing mean value. Consequently, in cases where, 
according to the boundary conditions, no flow (or prescribed flow) perpendicular 
to the dipole element should occur, this requirement is violated only locally, in regions 
one order of magnitude smaller than the dipole elements. But on average the require- 
ment will be satisfied, provided it is satisfied at the center point of the dipole element. 

However, the mean value of the tangential acceleration in the edge region of the 
dipole element does not vanish. Rather the infinite tangential acceleration at the edge 
is of Dirac type and the integral over this singularity is 

(In order to carry through this integration an integration path in 5 direction but at 
a small distance from the dipole element may be used.) 
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Therefore the infinite tangential acceleration at the element edge has an effect 
which is not only local, so that the tangential acceleration at the center of the dipole 
element is not an appropriate representation of the flow in c-direction. 

-For two dipole elements having a common edge and the same dipole intensities 
but different orientations the infinite accelerations at the common edge cancel each 
other. For elements with different dipole intensities the remaining infinite a~ce~erati~~ 
generates a vortex flow with the common edge as axis. 

Consequently, if a curved surface is formed by dipole elements, n~co~t~Q~e~ 
leakages due to the element edges have only a local character, related to regions one 
order of magnitude smaller than the dipole elements. On average the leakage at the 
element edges vanishes. This is an important advantage in comparison to elements 
with distributed sources where large leakages have been observed, for instance 
Renken [21]. 

7. SUPERPOSITION OF THE FIELDS DUE TO RECTANGULAR IPOLE ELEMENTS 
AND DISCRETE SOURCES 

As stated by Lamb [28] and mentioned in [7], for instance, any irrotational, inviscid, 
and incompressible flow without sources and volume forces may be generated by 
appropriate source and dipole distributions over the fluid field boundary. In almost 
all applications so far, only source distributions have been used, for simplieityy. 
In this paper, however, the singularity distribution over the &id boundary is modeled 
primarily by dipole elements and use is made of the advantages of these elements, 
discussed in the preceding section. Sources concentrated in discrete points m 
used exceptionally in special problems. Consequently in this work the me 
described in [20] is included as an option. The way in which the dipole e~~rne~ts and 
point sources are specified and the superposition of the corresponding pressure and 
acceleration fields is described in this section. Further details may be found in [29]. 

The geometry of the fluid boundary as well as the size, location, and orientation of 
the rectangular dipole elements, and, if applicable, the location of the discrete sources 
will be related to a global Cartesian coordinate system X, y, z. Within this system, 
points 

numbered by 

and described by their position vector 

attached tangential vectors 

the boundary values 

and some additional quantities 
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may be given. Depending on the indicators ijl and is2 the point j and the related 
quantities describe a boundary point and the type of the boundary conditions, or a 
singularity, or both. In this way the data input for specification and solution of a 
problem has been minimized. 

The indicator ijl means: 

ii1 = 1 The point j is a boundary point and the vectors i;jn and ?# are 
tangential vectors of the boundary surface, or the point j is 
a field point. 

ijl = 2 The point j is the center of a rectangular dipole element and the 
vectors r;j- and Fir denote length and width of the element 
as well as the basic vectors of the local Cartesian coordinate 
system &y, 8 related to this element. 

ijl = 3 The point j denotes a concentrated source (which is used 
as a singularity for solving the problem). 

ijl = 0 The point j is both a boundary point and the center of a 
dipole element (combination of ijl = 1 and ijl = 2). 

The case ijl = 1 together with ijl = 2 allows application of the technique of “sub- 
merged” dipole elements as indicated in Fig. 8. The case if1 = 1 together with ii1 = 3 
allows for applying of point sources as singularities in order to solve the problem. 
In both cases the singularities (dipole elements, point sources) have a certain distance 
from the fluid field. In the standard case of ijl = 0 the boundary surface is formed by 
rectangular dipole elements and care must be taken that leakages and overlappings 
between adjacent elements are minimized, as shown in Fig. 9 for instance. 

The indicator ii2 means: 

ij2 = 0 At point j the pressure and acceleration will be calculated. 
ij2 = 2 The point j is a boundary point with given normal acceleration 

ajb (acceleration perpendicular to the boundary surface). 
The pressure at point j will be calculated. 

ii2 = 3 The point j is a boundary point with given pressure Pjb. 
The acceleration at this point will be calculated. 

The indicators k$,..., kj4 and the related weights gjl,..., gj4 allow reduction of 
the number of unknowns describing the singularity distribution in comparison to the 
number of dipole elements or source points. Denoting these unknowns by 

x k, k = 1, 2 ,..., K, K = Max(kjl, kj2, kj3, kj4), j = 1, 2 ,..., J, 

the uniform intensity of the dipole element j or the strength of the source point j is 

(7.1) 
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FIG. 8. Boundary point (C* = 1) and “submerged” dipole element (i,” = 2). 

FIG. 9. Dipole elements forming the fluid boundary (it = 0). 

The indicators kjl, . . . , kj4 and the related weights g$,.**, gj4 may be specified from the 
following considerations: 

Assign the unknowns X;, to locations spread all over the A 
interpret the unknowns as function values describing the intensities 
in the environment of these locations. To each function value a 
should be assigned where either the acceleration aj” or the pressure .Pb is prescri 
i.e., ij2 = 2 or 3. In regions where relatively sharp gradients are expected or hi 
accuracy is required more function values, more prescribed pressures or accelerations, 
and more dipole elements or source points should be used than in other regions. For 
each dipole element or point source j find one, two, three, or four adjacent function 
values X, with the indices k = kjl,..., kj4. Then choose appropriate weights gjp,..., gj4 
in order to determine the intensity of the dipole elementj or the strength of the source 

oint j by interpolation with Eq. (7.1). Usually the weights should be appro~ima~e~~ 
inversely proportional to the distance between the dipole element or source point 
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FIG. 10. The indicators k,‘,... and related weights gjl,... for a smoothly curved fluid boundary. 

-oL t’ oca ions of the Function Values Xk 

Chosen Values: 
Dipole Element 9 Dipole Element 12 Dipole Element 15 

k; = I k&=1 k;: 5 k$= 6 k&=5 l&6 0 10 g; = 1. g;*=os g:,=025 g;=o.25 g;, : 05 g;= 0.5 

0 Locations df the 
Function Values Xk 

Af’ 
Edge of the Cut-out 

/ 
/’ 

Chosen Values : 

Dipole Element 6 Dipole Element 7 Dipole Element 6 Dipole Element 9 
k’,= 2 k!,=2 k$=3 k;=2 k,2=3 k;. 2 k,2=3 

0 
g:, = 1. g; =0.8 g; =0.2 g; =0.65 g;=O.35 g; 10.5 g,’ =0.5 

11 

FIG. 11. The indicators kj’,... and related weights gjl ,,.. for a fluid boundary with a cutout. 
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and the position of the corresponding function vaIues. ut never use the same function 
value to determine both the intensity of a dipole ele nt and the strength of a point 
source. Two examples of the choice of appropriate indicators I$,... and related 
weights gjl,.~. are presented in Fig. 10 and 11. The standard case with one unknown 
for each singularity, which is assumed in all other known methods, is obtained with 
kjl =jandg,‘= 1. 

For a unique solution of the problem, the number K of the unknowns must be 
smaller than or equal to the number of singularities (ij’ = 0 or 2 or 3), and equal to 
the number of boundary points with prescribed acceleration ajb or pressure Bib 
(ii1 = 0 or 1, ijz = 2 or 3). 

As an additional option inside the fluid field discrete sources with prescribed 
intensities can be taken into account. Strictly, these source points no longer 
to the fluid region, Jnstead small spheres surrounding these sources may be interpreted 
as additional fluid b .daries with the source intensities as boundary conditions. 

The superposition CL the pressure and acceleration fields due to the singularities 
is straightforward. For any point 1 where pressure and acceleration are to be calculated 
the local coordinates f, 7, 5 with respect to each dipole element and the distance 
to each source point have to be determined. Then the form&as (5.6) with (5.7) or (5.3) 
respectively, can be applied. Before summation of the accelerations, due to the 
different singularities, retransformation to the global coordinate system x, y, z is 
necessary, where the components of the acceleration vector Z are a”, a”, az. Now 
the superimposed pressure P and acceleration 2 at point 1 are 

The coefficients crk , crk ,... are determined by the above procedure and describe the 
influence of the function values of the singularities on pressure and acceleration at 
point 1. The terms BzP, Bp,... arise from the discrete sources with prescribed intensities 
inside the fluid field. 

8. SATISFACTION OF THE BOUNDARY CONDITIONS BY ~~TE~~~N~~~~N OF 
INTENSITIES OF THE SUPERIMPOSED S~~U~~~~T~E~ 

Satisfaction of the boundary conditions means that at each specified boundary 
point with ijl = 0 or 1 and ijz = 2 or 3, either the normal component of the acceler- 
ation C assumes the given value ajb or the pressure P assumes the given value Pjb. 
Consequently, from (7.2) the following system of linear equations for the unknowns 
X% is obtained: 
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For ijl 

For ijl 

0 or 1 and ijz 

0 or 1 and ii2 - 
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2 (prescribed normal acceleration) 

fl CikXk = ajb - Bj’. 

3 (prescribed pressure) (8.1) 

i CfkXk = Pjb - Bip. 
k=l 

In the former system the coefficient C.$ and the term Bjf result from Cj”rc , C$ , C$ 
and B,“, Bjy, Bjz, respectively, when, based on Eqs. (7.2), the normal acceleration a$ 
is calculated from the components am, ay, az. Th e normal directions of the specified 
boundary points are given by the cross product Fjj” x Fit. 

Since the number Ia’ of the unknowns X, was chosen to be equal to the number of 
boundary points with prescribed pressure or normal acceleration, the equation 
systems (8.1) include as many linear equations as unknowns. Provided the physical 
problem to be investigated is reasonable, which means, for instance, that the fluid 
boundary includes at least one region with prescribed pressure, the linear equations 
are independent of each other. Under these conditions a unique solution for the 
unknowns & may be obtained by standard procedures. 

For physical problems where the boundary regions with prescribed pressures are 
relatively small (for example a rigid-wall fluid container with relatively small 
openings) numerical problems may occur due to ill-conditioned coefficient matrices. 
However, by applying dipole elements with a faster decay behavior than source 
elements it may be concluded that this class of awkward problems is not very signi- 
ficant. (For problems with flexible boundaries this restriction does not exist.) 

Once the singularity distribution described by the function values X,c is known, the 
flow conditions at any given fluid point, i.e., the pressure and accelerations, can be 
calculated immediately by Eqs. (7.2). This is particularly easy for the specified 
boundary points because the coefficients Crk ,... and the terms BrP ,... are known 
anyway from preceding calculations. For other fluid points the determination of the 
corresponding coefficients and terms represents an additional effort. 

9. IMPLEMENTATION OF THE COMPUTER PROGRAM SING1 

The computer program SING1 is based on the theory described above. It is 
assumed that the problems may be symmetric about the plane z = 0, and information 
need be given for only one of the symmetric parts. The generality is not reduced by 
this assumption since nonsymmetric problems can be defined completely within the 
region z > 0. The symmetry condition then means that the problem is solved twice, 
in the region z > 0 and in the region z < 0. 
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The size of the problems, i.e., the number of boundary points and singularities, 
is not limited by the program but only by the available memory space and the CPU 
time of the computer. The program is written in PLjl and the input may be given in 
free format. The input data are essentially the same as those listed in the section before. 
The symbols used in the program are also identical or very close to the symbols 

SING1 consists of the following modules: 

SIDHAG 

SIKOEF 

Reading, checking and rearranging of the inpnt data. 

Control plot of the geometrical structure including the 
specified boundary points and the singularities. 

Calculation of the coefficients C$ ,... and the terms 
BLP,... and preparation of the linear equation system 
for the unknowns X, . 

SISBLV Solution of the linear equation system and calculation 
of pressure and accelerations at specific points 
(boundary points and, if required, field points). 

SIBLOT Plot of the results. 

As an indication of the computational effort of SING1 the memory space and the 
CPU time used for examples 1 and 2 discussed in the next section are given: 

Example 1 
(T-joint> 

Example 2 
(water pool of a pressure 
suppression system) 

CPU time 

Memory space 

35 set 

190 kbyte 

I7 min 

1OOOkbyte 

10. APPLICATIONS 

In order to demonstrate the applicability of the method, two different examples 
have been solved with SING1 . In both cases the singularity distribution was ~ro~dcd 
by dipole elements located at the fluid boundary. 

The first example is the incipient flow in a T-joint with rectangular surfaces an 
cross sections. The modeling of this fluid boundary by rectangular dipole elements is 
very simple and is shown in Fig. 12. The problem is symmetric about the plane z = 0 
which is automatically taken into account by the code SINGI. Furthermore the 
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Cross -section 1 

FIG. 12. Boundary discretization of a T-joint with different rectangular cross sections. 

problem is symmetric about the plane y = 0, so independent function values X, for 
the singularity distribution are specified only at the centers of those dipole elements 
which are located in the region y > 0. In this way only 63 unknowns were necessary 
although the number of dipole elements used was 126. A further reduction of the 
number of unknowns by using the same function value X, for several adjacent dipole 
elements was not made in this example. Cross section 1 with a prescribed pressure of 
3 bars and cross section 2 with vanishing pressure form the openings of the T-joint. 
The remaining fluid boundaries are rigid walls. The pressure distribution over these 
walls and the normal accelerations at cross sections 1 and 2 have been calculated 
with SINGl. The result immediately after flow begins is shown in Fig. 13, where the 
lengths of the horizontal lines are proportional to the pressure and the lengths of the 
vertical lines with arrows are proportional to the normal acceleration at the particular 
surfaces. Despite the sharp edges and the relatively small number of dipole elements 
and unknowns the results seem to be satisfactory. The ratio of the accelerations in 
cross sections 1 and 2 calculated with SING1 differs by less than 0.5 % from the exact 
value. Therefore it may be concluded that essential fluid losses due to leakages at 
edges, which had been observed in calculations with other singularity methods [21], 
do not occur in SINGI. 
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4 Normal Acceleration 
=-i Pressure 

Cross - section 1 

FIG. 13. Pressure and acceleration distribution over the surfaces and cross sections of a T-joint. 
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FIGS. 14. Boundary discretization of a 60” section of the pressure suppression system. 

Frcs. 15.’ Pressure distribution over the cylindrical, lateral, and conical surface. 
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Spherical Surface 

FIG. 16. I’resswe and acceleration distribution over the free fluid surface and spherical surface. 

The second example is the oscillating flow in the water pool of the pressure suppres- 
sion system of a boiling water reactor. Under certain operating or emergency con- 
ditions steam is blown into the water pool through downcomer tubes. At the end of 
these tubes highly transient condensation processes may take place causing ~~~sati.~ 
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flows and pressures in the whole system. The fluctuating pressure distributions at the 
walls are significant for the structural integrity of the system. Figure 14 shows a 60” 
section of the water pool. The transient condensation process is represented by a fluid 
source with a given intensity gradient. At all surfaces the normal acceleration vanishes 
except at the free water surface. Here the pressure vanishes. This means that the walls 
of the water pool are assumed to be rigid. The discretization of the fluid boundary 
by a total of 696 dipole elements is also shown in Fig. 14. It can be seen that the over- 
lappings and leakages between the dipole elements are rather small. Using the same 
function value X, for several adjacent dipole elements the number of unknowns was 
reduced to a total of 247. The results obtained with SING1 are shown in Figs. 15 and 
16. As in the first example the lengths of the horizontal lines are proportional to the 
pressures and the lengths of the vertical lines with arrows are proportional to the 
accelerations at the centers of the dipole elements. Acceleration lines smaller than the 
length of the arrow are omitted. Since satisfaction of the boundary conditions was not 
required at the center of each dipole element small accelerations perpendicular to the 
walls occur, representing the actual boundary conditions. 

In more detailed investigations calculations have been carried through with a 
slightly different set of function values and different locations of the prescribed fluid 
sources. The results are reported in [29]. They indicate that local errors in the boundary 
conditions have very little influence on the pressure distribution. 

The same examples 1 ‘and 2 but with one wall flexible will be investigated in the 
second part of this paper. 
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