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In Part I a singularity methaod—also called boundary integral equation method or panei
method—has been developed. It is applicable especially to highly transient internal flow
problems with any three-dimensional geometry including walls wetted on both sides. The
boundary conditions are prescribed in terms of pressures and/or accelerations. The method
is primarily based on a recently developed dipole element treatment for incompressible
fluids. Such elements (panels) can be fitted to the fluid boundary or any enveloping surface.
Also, point sources may be included. The applicability of the method is demonstrated by
two different examples: the incipient flow in a T-joint and the osciilating flow in the pressure
suppression system of a boiling water reactor. In Part II the coupling of the transient flow
problem with the dynamic behavior of the surrounding structure wiil be investigaied,

1. INTRODUCTION

Future advanced safety criteria of large technical systems will, in many cases,
require a catastrophic failure to be ruled out even in cases with postulated failures of
single components. As a consequence, the impact of a failing structural member on the
other parts of the system must be thoroughly investigated. In many cases thesc
structural members are surrounded by fluid which takes part in the dynamic processes.
Thus, there is an increasing demand for analysis methods for complex mechanical
systems including fluid fields and structural members, both under highly transient
conditions.

Various applications for such advanced investigations arise from probiems in
nuclear reactor safety. Examples are the seismic loading of fluid containers, rapid shut
off in coolant circuits, the postulated breach of a coolant circuit with subsequent
loading of pressure vessel internals, and the steam condensation in the pressure
suppression system of a boiling water reactor.

In this part of the paper a singularity method? is presented which is applicable to
the fluid dynamics aspects of the above problems. In Part 11 the fluid dynamic model

1 Methods of this type are also known under the term “boundary integral equation method {(BIE)”
or “panel method.”
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is integrated into the mathematical description of the structural response in order to
account for the mutual dependency—called coupling—between fluid and structural
dynamics. In this way the conditions for both the fiuid and the structural dynamics are
simultaneously satisfied.

In order to demonstrate the applicability of the singularity method the incipient
flow in a T-joint with rectangular cross sections is investigated. Another, more
detailed example is the water pool of the above-mentioned pressure suppression system.

2. DEFINITION OF THE PROBLEM

The fluid dynamic parts of those problems which have been referred to in Section 1
may be characterized as follows:

—highly transient flow fields

—almost arbitrary three-dimensional flow fields, especially internal flow problems
with thin walls wetted on both sides

—boundary conditions with prescribed normal velocities (Neumann type) or with
prescribed pressures (free fluid surface, Dirichlet type).

Furthermore, the mathematical description for the fluid dynamics must be useful
as a basis for a solution procedure in coupled problems in Part IT of this paper.

In order to solve the fluid dynamics problems defined above, some restrictions are
necessary or advisable:

—Displacements of the fluid boundaries must be small in comparison to character-
istic dimensions of the fluid field.

—The dynamic pressures due to the fluid velocity at a fluid boundary with prescribed
pressures must be small in comparison to characteristic pressure differences of the
system.

—Body forces, for instance gravity forces, cannot be taken into account. (However,
by applying the technique of fluid structural coupling surface waves can be modeled.)

—The fluid viscosity must be negligible.

—The fluid compressibility must be negligible and the fluid density must be
constant. (However, by applying the technique of fluid structural coupling the fluid
compressibility may be roughly approximated by additional artificial boundary
flexibilities.)

—Fluid rotations must be negligible.

In contrast to steady-state flow problems the neglect of the fluid viscosity in
transient flow problems seldom introduces large errors for two reasons. First, at each
fluid point the viscosity force must be compared not only with the convective inertia
(as in the case of steady-state flows), but also with the local inertia which is propor-
tional to the transient flow changes. Second, most transient problems concern
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incipient flows with lower velocities than in corresponding steady-state problems.
Furthermore, viscosity effects are usually proportional to the square of the velocities.
Consequently, if potential flow theory (flow without viscosity) is adequate for many
steady-state problems, as indicated in the next section, it will be even more adequate
for highly transient problems.

More questionable is the neglect of the fluid compressibility. For steady-state flows
this means that the Mach number must be sufficiently small (according to [3]
smaller than 0.5). For transient flows it means, in addition, that the propagation
velocity of compression waves (velocity of sound) is assumed to be infinite (Surface
waves or wave effects due to flexible boundaries, which are important in the case of
coupled problems, are not directly affected.) In other words, the time necessary for a
compression wave to traverse the fluid region is neglected. If this time is small in
comparison to the times for the transient flow changes, then the above assumption s
justified [1].

3. Basic CONCEPT OF THE SINGULARITY METHOD

Under the assumptions of Section 2 the three-dimensional flow and pressure fields
of the problem may be generated by superposition of elementary flow and pressure
fields which can be described by simple analytical functions. Examples for such
elementary flelds are source flows, dipole flows, or—more general—flows due to
singularities. Now, assuming that these singularities may be distributed over the fluid
field boundary or any other given boundary enclosing the fluid region, the intensity
distribution for the singularities can be found by satisfying the boundary conditions.
This requires the solution of an integral equation. The unknowns occurring here
refer only to the fiuid boundary. For numerical solution the singularity distribution is
approximated by an appropriate arrangement of panels—sometimes also. called
finite elements—with prescribed distribution shapes. As a consequence, the singularity
distribution is described by a finite number of unknowns and the integral equation is
reduced to one linear equation for each boundary point. In general a unique solution
can be obtained, when the number of unknowns is the same as the number of linear
equations. Thus, an exact satisfaction of the boundary conditions can be achieved
only at a finite number of boundary points. This is the basic concept of the singularity
method which will be used in this paper. A more general description may be found in
contributions from Wait and Symm in [2].

The same basic concept is widely used in aerodynamics. Here, some of the first
papers including extensive applications have been published by Hess and Smith [3-5].
A description of these works may also be found by Lock in [6]. Other applications in
aerodynamics are reported, for instance, by Johnson and Rubbert [7], by Medan [8],
by Grodtkjaer [9], and by Korner and Hirschel [10]. Investigations of ship hulls and
applications to submarine problems are reported by Ecer, Eichers, and Bratanow [11],
by Albring and Schindler [12], and by Webster [13].

All of these papers deal with external steady-state flow problems, namely, flows
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around wings, fuselages, or ship hulls. Usually the applied singularities are
sources uniformly distributed over plane triangular, or quadrilateral panels which
approximately form the fluid boundary. One way to improve the accuracy of the
method is the application of panels with curved surfaces (avoiding sharp corners
between adjacent panels) in combination with linearly varying source distributions
[5, 7], or the application of higher-order approximations as discussed by Argyris and
Scharpf [14] or by Nediec [15]. Another way to improve the accuracy is to distribute
the singularities at a certain distance outside the fluid field [13, 16, 17].

The situation is different for the so-called interior flow problems, i.e., flows in
channels or containers, which are dealt with in this paper. Useful results have been
obtained with point singularities in a certain distance from the fluid boundary by
Holler [18], Landweber [19], and one of the authors [20]. But this method cannot
be used for fluid fields with thin walls wetted on both sides, as required here, and there
are, besides, some questions and difficulties concerning optimal locations of the
singularities. On the other hand, applying a panel method with distributed sources
at the fluid boundaries is impossible or unsuitable for three reasons. Again, thin walls
wetted on both sides cannot be treated adequately, since fluid sources are not able to
model a pressure step across the wall. Furthermore, considerable leakages at boundary
edges are reported by Renken [21]. Finally, depending on the geometric details,
internal flow problems have a larger tendency than external flow problems to yield
ill-conditioned systems of linear equations.

Therefore a modified singularity method has been developed, the numerical
calculations are performed using a computer code called SINGI1. As singularities
so-called dipole elements are used. These are rectangular plane panels with uniformly
distributed dipoles (or doublets). The dipole axes are perpendicular to the panels.
The pressure field induced by such a dipole element is continuous over the whole
space, except in the panel itself, across which a pressure step occurs. For this reason
dipole elements are especially suitable for modeling the pressure differences at thin
walls which are wetted by the fluid on both sides. Detailed investigations reveal
another advantage: excessive leakages at boundary edges, which arise when source
elements form the fluid boundary, do not occur. Finally, for dipoles the decay of
pressure and velocity with increasing distance is one order higher than in the case of
fluid sources. This fact seems to reduce the tendency to produce ill-conditioned
systems of linear equations observed for internal flow problems treated by source
elements.

A disadvantage of dipole elements is that the analytical functions describing the
pressure and velocity distributions are somewhat more difficult to handle than the
corresponding distributions from the well-known source elements. For this reason,
only rectangular, but not triangular, dipole elements are available in SINGI.
Consequently, the discretization of curved fluid boundaries may create some
difficulties. :

To overcome these difficulties, but also to allow for a flexible and economical
treatment of the given problems, two additional options can be used in SINGI.
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For fluid boundaries not generated by thin walls wetted on both sides the dipole
elements may be applied in a submerged version. This increases the smoothness and
the accuracy of the results, provided the distance between dipole element and fiuid
boundary is not too large. Moreover, the intensity of each dipole element need not be
introduced as an unknown of the system of linear equations. Instead several intensities
may be described by the same unknown or by the weighted mean of any four
unknowns. This allows for an approximation of curved fluid boundaries by a large
number of rectangular panels. The number of unknowns, however, may be kept
relatively small.

In comparison to finite-difference methods, see for instance [22-24], the application
of singularity methods offers some advantages:

—Only the fluid boundary and not the whole three-dimensional fluid domain has
to be discretized for numerical treatment.

—Concentrating the discretization at the fluid boundary allows for an optimal
formulation of the boundary conditions. To gain similar advantages in the case of
applying finite-difference methods, curvilinear coordinate systems must be introduced
having coordinate surfaces coincident with the fluid boundaries [25, 26].

—Under the assumptions of inviscid and incompressible conditions an “exact”
solution is obtained for boundary conditions which differ slightly from the given
conditions. But these deviations are calculated as a part of the solution. Their average
values over certain subregions of the fluid boundary vanish.

—Since in this singularity method the fluid dynamic unknowns are related only to
the fluid boundary, and this boundary largely coincides with the surfaces of the
surrounding structures, the development of solution fechniques for coupled fluid-
structural dynamics problems is facilitated.

—A structural disadvantage inherent in the singularity method is that effects due
to fluid viscosity are neglected. Effects due to fluid compressibility may be roughly
included if required. Furthermore, the fluid density must be uniform throughout the
whole fluid region.

—However, the fact that in singularity methods it is primarily the flow conditions
at the fluid boundary which are computed, turns out to be rather an advantage than
a disadvantage, since in most cases it is just these conditions which are of interest.

4, Fruib DyNaMic EQUATIONS

The field equations which govern an inviscid, incompressible fluid without sources
and body forces are

divo =0 (continuity)
and 4.1

d 1
g @) = — ; grad p {momentum),
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where 7 is the velocity vector; =, time; p, density; p, (static) pressure. Introducing the
total pressure P as a new variable

P=p+ 4, 4.2)

using the identity
d . o . o = O 1 _ _ _
217(1)) —-5-;(0) —l—(vV)v =5;_-(v)+§gradvz——v X rot 7,

and assuming

rotv =0,

the basic equation can be stated as

divo =0
4.3)

or 1
a—’r—[—;gradP——O.

In these equations the unknowns ¥ and .P appear linearly. Therefore the principle of
superposition, which is the basic idea of the method of singularities, is applicable.

It should be mentioned that this is not true for the unknowns @ and p in Egs. (4.1),
since the time derivatives are related to local coordinate systems which are translating
and rotating according to the velocity field 7. For different flow fields this means that
the local coordinate systems translate and rotate in different ways. However, for
superposition of different flow fields a major prerequisite is that the quantities to be
superimposed must be related to the same coordinate system.

In order to make use of the linearity of Eqgs. (4.3) and to use the principle of super-
position to solve the problem, the boundary conditions should also be linear functions
of # and P. This is true for flow problems with boundaries represented by rigid walls
(for instance the aerodynamic problems mentioned in Section 3), but not for flow
problems with free fluid surfaces,? where the pressure p and not the pressure head P
is given.

Fortunately, in many cases the velocities at free fluid surfaces are rather small,
so that

%Pﬁfz < De >
where #, is the velocity vector at the free fluid surface and Po is the characteristic
pressure difference occurring in the problem. Under this condition the term }p#? is

negligible at these boundaries and the prescribed pressures p may be simply approxi-
mated by prescribed total pressures P.

2 Here a f;ree fluid surface is any fluid boundary with prescribed pressure.
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In other cases with somewhat larger velocities at the free fluid surface, one or more
computational steps may be added, where the approximation of the prescribed
pressures p may be iteratively improved on the basis of the velocities at the free fluid
surface obtained in the preceding computational step.

5. PRESSURE AND ACCELERATION FIELDS DUE TO A RECTANGULAR DIPOLE ELEMENT

The formulas describing the pressure and velocity distributions around a rectangular
dipole are given in [27]. Here only some major steps in deriving these formulas are
repeated.

In highly transient flow problems the fluid accelerations, rather than the velocities,
are of primary interest. Therefore the acceleration vector &

a = difér (5.1)

is introduced. It should be emphasized that for this definition which is based on the
partial, and not as usually on the total, time deirvatives, inertia forces are not
proportional to the acceleration vector a.

In order to present the solutions of the fluid dynamic equations (4.3} for a discrete
source or a dipole surrounded by an infinite fluid, a spherical coordinate system r, i,
¢ is introduced. The directions of the components a7, a¥, ¢® of the acceleration vector &
are shown in Fig. 1. For a source S located at the origin of the spherical coordinate
system the pressure and acceleration fields are

_o8ler 1 v

P=p iz 7 47 0

aSfor 1 -2)

o T b

4o r2° é 0.

16
kil y
i -
Locction{;f a Discrete £ Sink Source £

Source or Dipole

F1G. 1. Spherical coordinate system with a discrete source or dipole.
Fic. 2. Definition of the dipole T
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The dipole T is defined as
T = 1jm Sd.
d-0
As shown in Fig. 2, a source and a sink, both of intensity S, are separated by distance d.
According to these definitions the pressure and acceleration fields of a dipole 7 can be
calculated by superimposing the corresponding fields due to both singularities with
the distance vector d approaching zero. The results are

_oTfer 1 . s oTfor 1 . .
P=p G 72 CO8 focos g, a¥ = i, ;3 sin i+ cos ¢,
8Tjer 1 oTjor 1 3)
— T . 6 — ZHI9T L
a =2 A 53 CO8 yrcos¢p, a 4, 3 Sin ¢.

Equations (5.2) and (5.3) are valid through the whole space except the coordinate
origin, where the singularities, i.e., the source or the dipole, are located. By integration
over the surface of a small sphere surrounding the dipole, a force can be found which
is proportional to 67/ér and has the same direction as T.

\T o
al

2" -
Field Point af

Fic. 3. Cartesian coordinate system with rectangular dipole element.
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Now dipoles will be uniformly distributed over a plane rectangular element shown
in Fig. 3. The dipole axes are perpendicular to the element. Field points are described
by Cartesian coordinates &, 7, {; points belonging to the plane rectangular dipole
element are described by the coordinates 7, {. The origin of both coordinate systems
is located at the element center and the % and { axes and 7 and { axes, respectively,
are perpendicular to the element length " and element width 4. The symbols af, a7, a*
denote the corresponding components of the acceleration vector d. Introducing the
dipole density

a*T

= gdl (5.4)

and using appropriate formulas for coordinate transformation between the system r,
i, ¢ and the system £, v, {, the principle of superposition yields

_otfor +rlja a2 ¢ o
P = p A —rlf2 f—M/Z [52 4= (7] . 77)2 A (g __ C)2]3/2 d’l] dé’ .
_ Btfor g e 28— (g - P = (=D
“= 4w 'j—ra/z J_Tn/z [+ (g — 92+ ({— OFPr a7 dg,
(5.5
at/m- B2 )2 30 — %) o
—rt2 f_rn/z [ 4 (y — 7P -+ (L — PP dq dg,
ot — 6!/87- b2 ez 3L — O o
B frc/z f_rn/z [ -+ (g — 7 + (L — OPPe a7 dd.

After lengthy calculations the following, relatively simply, closed-form solutions for
the pressure and acceleration fields due to the rectangular dipole element can be
found:

P = p P00 (o, 1y — £, 1) — 7 7P O+ SE T O]
at = P07 [pe(e, o, ) — FHE 7% ) — FE 7 B — FE R O,

. (5.6)
0= DT ot o, 1) — o, B — frE, 7 ) — FE )
a = 20T 7, . ) — FHE o 1) — SHE 7 1) — FHE S 9],
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where the arguments &, %%, %, ¢, 7% (3% etc., relate to coordinate systems which are
translated into the corner points 1, 2,..., etc. of the dipole element.

7 =7+ m2, n? =1 — 2, =7+ r2, nt =9 — |2,

O=04r, P=0+r2 DB=(—r2 0=[—r2
The functions f7, f¢, /7, f¢ are defined as follows:

yz
(xz + y2 + 22)1/2
: _ y2(2x* + ¥ + 27)
oG, . 2) 2+ A2 + D2 + 32 + B2
—XZ

(x2 _1L y2)(x2 + yZ + ZZ)I/Z 4

f¥x, y, z) = arctan p” (principal value);

(5.7)

fn(x, Vs Z) =

—X
f4x,p,2) = o2 + 29057 +yyz ¥ zB)iE -

6. DiscussioN oF THE FIELDS DUE TO A RECTANGULAR DipOLE ELEMENT

In order to study the properties of the pressure field described by Egs. (5.6) the
close environment of the plane £ = 0 will be investigated. Defining the location of a
field point by the angle «, as shown in Fig. 4, the formula for the pressure can be
approximated by
1 o at ‘

—_ = = ,___ ! Z
P_(2 27)"’37 for {£] <. (6.1)
Based on this relation the following statements can easily be verified:

—Approaching the dipole element from the half space £ > 0 the limit pressure is

. 1 ot
Im P=5p5"
Approaching the dipole element from the half space £ <C O the limit has the opposite
sign. However, for the plane £ = 0 outside the dipole element, the pressure P vanishes
(Fig. 5).
Thus, within the dipole element a pressure step

ot
occurs which may be used to simulate pressure differences across thin walls wetted
on both sides.
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—For two dipole elements having a common edge and the same dipole intensities
but different orientations (Fig. 6), approaching the edge from opposite dipole direc-
tions yields the limit pressures

lip P =1+ ) p g7

and approaching the edge from the other side, yields the limit pressure of

lig P = (1 =) o 7.

so that also close to edges between two dipole elements, the pressure step within the
elements is

ot
This is true even for elements with different dipole intensities.

Also the equations for the acceleration vector close to the edge of the dipole
element become very simple. Defining the location of a field point by the distance | & |
and the angle «, as shown in Fig. 4, the acceleration vector has a value of

toa 1

= 5T

. (6.2)

The direction is obtained by a clockwise 90° turn of the distance vector é.

From these findings it follows immediately:

—Inside the dipole element the acceleration vector is perpendicular to the element
plane. Approaching the edges of the dipole element the acceleration vector approaches
an infinite value hyperbolically. However, at the edges the acceleration component
perpendicular to the element plane vanishes and an infinite component tangential
to the element plane (and perpendicular to the element edge) occurs (Fig. 7).

It follows that in the edge region of the dipole element the acceleration perpendicular
to the element plane has a vanishing mean value. Consequently, in cases where,
according to the boundary conditions, no flow (or prescribed flow) perpendicular
to the dipole element should occur, this requirement is violated only locally, in regions
one order of magnitude smaller than the dipole elements. But on average the require-
ment will be satisfied, provided it is satisfied at the center point of the dipole element.

However, the mean value of the tangential acceleration in the edge region of the
dipole element does not vanish. Rather the infinite tangential acceleration at the edge
is of Dirac type and the integral over this singularity is

fa%i@:%.

(In order to carry through this integration an integration path in { direction but at
a small distance from the dipole element may be used.)
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Therefore the infinite tangential acceleration at the element edge has an effect
which is not only local, so that the tangential acceleration at the center of the dipole
element is not an appropriate representation of the flow in {-direction.

—For two dipole elements having a common edge and the same dipole intensities
but different orientations the infinite accelerations at the common edge cancel each
other. For elements with different dipole intensities the remaining infinite acceleration
generates a vortex flow with the common edge as axis.

Consequently, if a curved surface is formed by dipole elements, uncontrolled
leakages due to the element edges have only a local character, related to regions one
order of magnitude smaller than the dipole elements. On average the leakage at the
element edges vanishes. This is an important advantage in comparison to elements
with distributed sources where large leakages have been observed, for instance by
Renken [21].

7. SUPERPOSITION OF THE FIELDS DUE TO RECTANGULAR DIPOLE ELEMENTS
AND DISCRETE SOURCES

As stated by Lamb [28] and mentioned in [7], for instance, any irrotational, inviscid,
and incompressible flow without sources and velume forces may be generated by
appropriate source and dipole distributions over the fluid field boundary. In almost
all applications so far, only source distributions have been used, for simplicity.
In this paper, however, the singularity distribution over the fluid boundary is modeled
primarily by dipole elements and use is made of the advantages of these elements,
discussed in the preceding section. Sources concentrated in discrete points may be
used exceptionally in special problems. Consequently in this work the method
described in [20] is included as an option. The way in which the dipole elements and
point sources are specified and the superposition of the corresponding pressure and
acceleration fields is described in this section. Further details may be found in [29].

The geometry of the fluid boundary as well as the size, location, and orientation of
the rectangular dipole elements, and, if applicable, the location of the discrete sources
will be related to a global Cartesian coordinate system x, y, z. Within this system,
points

P19 _ 7T
and desciibed Dy THeIl POSItoNn vector Ti = (X7, V7. 21
attached tangential vectors Firo= (X" Y, 2,
7t = (x5 yi% 25,
the boundary values a or Py,
and some additional quantities i, i7

2 3 4
kj15 kiﬂkj:kjy
1 2 3 4

&is &% 81> 85
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may be given. Depending on the indicators i;* and i the point j and the related
quantities describe a boundary point and the type of the boundary conditions, or a
singularity, or both. In this way the data input for specification and solution of a
problem has been minimized.

The indicator 7;* means:

it = 1 The point j is a boundary point and the vectors 7;” and 7;* are
tangential vectors of the boundary surface, or the point j is
a field point.

i* =2 The pointjis the center of a rectangular dipole element and the
vectors 77 and 7;* denote length and width of the element
as well as the basic vectors of the local Cartesian coordinate
system £, 7, { related to this element.

it =3 The point j denotes a concentrated source (which is used
as a singularity for solving the problem). »

it =0 The point j is both a boundary point and the center of a
dipole element (combiration of i* = 1 and 7' = 2).

The case i;' = 1 together with i;' = 2 allows application of the technique of “sub-
merged” dipole elements as indicated in Fig. 8. The case i;* = 1 together with i! =
allows for applying of point sources as singularities in order to solve the problem.
In both cases the singularities (dipole elements, point sources) have a certain distance
from the fluid field. In the standard case of /;* = 0 the boundary surface is formed by
rectangular dipole elements and care must be taken that leakages and overlappings
between adjacent elements are minimized, as shown in Fig. 9 for instance.
The indicator 7;* means:

i;2 = 0 At point j the pressure and acceleration will be calculated.

i = 2 The point jis a boundary point with given normal acceleration
a;® (acceleration perpendicular to the boundary surface).
The pressure at point j will be calculated.

i =3 The point j is a boundary point with given pressure P,
The acceleration at this point will be calculated.

The indicators k..., k* and the related weights gb,..., g4 allow reduction of
the number of unknowns describing the singularity distribution in comparison to the
number of dipole elements or source points. Denoting these unknowns by

Xk 5 k= 1, 2,..., K, K = MaX(k,-l, ka, kjs, kj4), ] = l, 2,..., J,
the uniform intensity of the dipole element j or the strength of the source point j is

3[,—/37'

N Am( g Xpp + 82 Xe2 + 8°2X22 + 2 X2 (7.1)
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FiG. 8. Boundary point (i = 1) and “submerged” dipole element (i = 2).
Frc. 9. Dipole elements forming the fluid boundary (i = 0).

The indicators k%,..., k;* and the related weights g7,..., g, may be specified from the
following considerations:

Assign the unknowns X to locations spread all over the fluid boundary and
interpret the unknowns as function values describing the intensities of the singularities
in the environment of these locations. To each function value a boundary point
should be assigned where either the acceleration ¢;® or the pressure P? is prescribed,
i.e., ;> = 2 or 3. In regions where relatively sharp gradients are expected or high
accuracy is required more function values, more prescribed pressures or accelerations,
and more dipole elements or source points should be used than in other regions. For
each dipole element or point source j find one, two, three, or four adjacent function
values X3 with the indices k = k/1,..., k;4 Then choose appropriate weights g%,..., g4
in order to determine the intensity of the dipole element j or the strength of the source
point j by interpolation with Eq. (7.1). Usually the weights should be approximately
inversely proportional to the distance between the dipole element or source point

581/34/2-2
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Fic. 10. The indicators k,',... and related weights g/,... for a smoothly curved fluid boundary.

Fig. 11. The indicators &;%,... and related weights g,... for a fluid boundary with a cutout.
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and the position of the corresponding function values. But never use the same function
value to determine both the intensity of a dipole element and the strength of a point
source. Two examples of the choice of appropriate indicators k... and related
weights g;1,... are presented in Fig. 10 and 11. The standard case with one unknown
for each singularity, which is assumed in all other known methods, is obtained with
kt = jand g/t = 1.

For a unique solution of the problem, the number X of the unknowns must be
smaller than or equal to the number of singularities (71 = 0 or 2 or 3), and equal to
the number of boundary points with prescribed acceleration a;° or pressure P
Gt =06orl,i?=2o0r3).

As an additional option inside the fluid field discrete sources with prescribed
intensities can be taken into account. Strictly, these source points no longer belong
to the fluid region. I=stead small spheres surrounding these sources may be interpreted
as additional fluid b ~daries with the source intensities as boundary conditions.

The superposition o. the pressure and acceleration fields due to the singularities
is straightforward. For any point / where pressure and acceleration are to be calculated
the local coordinates &, n, { with respect to each dipole element and the distance
to each source point have to be determined. Then the formulas (5.6) with (5.7) or {5.3),
respectively, can be applied. Before summation of the accelerations, due to the
different singularities, retransformation to the global coordinate system x, y, z is
necessary, where the components of the acceleration vector @ are %, @¥, a*. Now
the superimposed pressure P and acceleration a at point / are

X X
P:BlP+ZC£chcs ay:BlyJ.‘zCZkaka

k=1 fe=1

(7.2)

X K
a’ = B" + Z CiX » a® = B + z ChXr .
r=1

k=1

The coefficients CF, , C5, ,... are determined by the above procedure and describe the
influence of the function values of the singularities on pressure and acceleration at
point . The terms B,F, B)?,... arise from the discrete sources with prescribed intensities
inside the fluid field.

8. SATISFACTION OF THE BOUNDARY CONDITIONS BY DDETERMINATION OF
INTENSITIES OF THE SUPERIMPOSED SINGULARITIES

Satisfaction of the boundary conditions means that at each specified boundary
point with i;* = 0 or 1 and i;2 = 2 or 3, either the normal component of the acceler-
ation @ assumes the given value g;® or the pressure P assumes the given value PJ.
Consequently, from (7.2) the following system of linear equations for the unknowns
X, is obtained:



156 KRIEG AND HAILFINGER

For it = 0 or 1 and ;2 = 2 (prescribed normal acceleration)
K
Y. ChXy = a” — B,
k=1
For z* = 0 or 1 and ;2 = 3 (prescribed pressure) 8.1)
K
Y ChX, = P — B
k=1

In the former system the coefficient C%, and the term By result from Cj,, C% , C%
and B;®, B, B, respectively, when, based on Egs. (7.2), the normal acceleration a;¢
is calculated from the components a*, ¢¥, @*. The normal directions of the specified
boundary points are given by the cross product 7" X 7%

Since the number K of the unknowns X, was chosen to be equal to the number of
boundary points with prescribed pressure or normal acceleration, the equation
systems (8.1) include as many linear equations as unknowns. Provided the physical
problem to be investigated is reasonable, which means, for instance, that the fluid
boundary includes at least one region with prescribed pressure, the linear equations
are independent of each other. Under these conditions a unique solution for the
unknowns X;, may be obtained by standard procedures.

For physical problems where the boundary regions with prescribed pressures are
relatively small (for example a rigid-wall fluid container with relatively small
openings) numerical problems may occur due to ill-conditioned coefficient matrices.
However, by applying dipole elements with a faster decay behavior than source
elements it may be concluded that this class of awkward problems is not very signi-
ficant. (For problems with flexible boundaries this restriction does not exist.)

Once the singularity distribution described by the function values X, is known, the
flow conditions at any given fluid point, i.e., the pressure and accelerations, can be
calculated immediately by Eqs. (7.2). This is particularly easy for the specified
boundary points because the coefficients Cl,... and the terms B,P,... are known
anyway from preceding calculations. For other fluid points the determination of the
corresponding coefficients and terms represents an additional effort.

9. IMPLEMENTATION OF THE COMPUTER PrROGRAM SING1

The computer program SINGI is based on the theory described above. It is
assumed that the problems may be symmetric about the plane z = 0, and information
need be given for only one of the symmetric parts. The generality is not reduced by
this assumption since nonsymmetric problems can be defined completely within the
region z > 0. The symmetry condition then means that the problem is solved twice,
in the region z > 0 and in the region z < 0.
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The size of the problems, i.e., the number of boundary points and singularities,
is not limited by the program but only by the available memory space and the CPU
time of the computer. The program is written in PL/1 and the input may be given in
free format. The input data are essentially the same as those listed in the section before.
The symbols used in the program are also identical or very close to the symbols used
in this paper.

SING]1 consists of the following modules: '

SIDIAG Reading, checking and rearranging of the input data.

SIPLOT Control plot of the geometrical structure including the
specified boundary points and the singularities.

SIKOEF Calculation of the coefficients €%, ,... and the terms
B/,... and preparation of the linear equation system
for the unknowns X;, .

SISOLV Solution of the linear equation system and calculation
of pressure and accelerations at specific poinis
{(boundary points and, if required, field points).

SIPLOT Plot of the results.

As an indication of the computational effort of SING1 the memory space and the
CPU time used for examples 1 and 2 discussed in the next section are given:

Example 1 Example 2
(T-joint) {water pool of a pressure
suppression system)

CPU time 35 sec 17 min
Memory space 190 kbyte 1000 kbyte

10. APPLICATIONS

In order to demonstrate the applicability of the method, two different examples
have been solved with SINGI. In both cases the singularity distribution was provided
by dipole elements located at the fluid boundary.

The first example is the incipient flow in a T-joint with rectangular surfaces and
cross sections. The modeling of this fluid boundary by rectangular dipole elements is
very simple and is shown in Fig. 12. The problem is symmetric about the plane z = 0
which is automatically taken into account by the code SINGI. Furthermore the
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Fic. 12. Boundary discretization of a T-joint with different rectangular cross sections.

problem is symmetric about the plane y = 0, so independent function values X, for
the singularity distribution are specified only at the centers of those dipole elements
which are located in the region y > 0. In this way only 63 unknowns were necessary
although the number of dipole elements used was 126. A further reduction of the
number of unknowns by using the same function value X} for several adjacent dipole
elements was not made in this example. Cross section 1 with a prescribed pressure of
3 bars and cross section 2 with vanishing pressure form the openings of the T-joint.
The remaining fluid boundaries are rigid walls. The pressure distribution over these
walls and the normal accelerations at cross sections 1 and 2 have been calculated
with SING1. The result immediately after flow begins is shown in Fig. 13, where the
lengths of the horizontal lines are proportional to the pressure and the lengths of the
vertical lines with arrows are proportional to the normal acceleration at the particular
surfaces. Despite the sharp edges and the relatively small number of dipole elements
and unknowns the results seem to be satisfactory. The ratio of the accelerations in
cross sections 1 and 2 calculated with SING1 differs by less than 0.5 9 from the exact
value. Therefore it may be concluded that essential fluid losses due to leakages at
edges, which had been observed in calculations with other singularity methods [21],
do not occur in SINGI.
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Fre. 13. Pressure and acceleration distribution over the surfaces and cross sections of a T-joint.
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Fic. 14. Bouﬁdary discretization of a 60° section of the pressure suppression system.

Fig. 15. Pressure distribution over the cylindrical, lateral, and conical surface.
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Free Fluid
Surface

FiG. 16. Pressure and acceleration distribution over the free fluid surface and spherical surface.

The second example is the oscillating flow in the water pool of the pressure suppres-
sion system of a boiling water reactor. Under certain operating or emergency con-
ditions steam is blown into the water pool through downcomer tubes. At the end of
these tubes highly transient condensation processes may take place causing pulsating
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flows and pressures in the whole system. The fluctuating pressure distributions at the
walls are significant for the structural integrity of the system. Figure 14 shows a 60°
section of the water pool. The transient condensation process is represented by a fluid
source with a given intensity gradient. At all surfaces the normal acceleration vanishes
except at the free water surface. Here the pressure vanishes. This means that the walls
of the water pool are assumed to be rigid. The discretization of the fluid boundary
by a total of 696 dipole elements is also shown in Fig. 14. It can be seen that the over-
lappings and leakages between the dipole elements are rather small. Using the same
function value X for several adjacent dipole elements the number of unknowns was
reduced to a total of 247. The results obtained with SING! are shown in Figs. 15 and
16. As in the first example the lengths of the horizontal lines are proportional to the
pressures and the lengths of the vertical lines with arrows are proportional to the
accelerations at the centers of the dipole elements. Acceleration lines smaller than the
length of the arrow are omitted. Since satisfaction of the boundary conditions was not
required at the center of each dipole element small accelerations perpendicular to the

walls occur, representing the actual boundary conditions.
: H Loal H Lot e 1 tad ul L 7% TN

¥
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sources. The results are reported in [29]. They indicate that local errors in the boundary
conditions have very little influence on the pressure distribution.

The same examples 1-and 2 but with one wall flexible will be investigated in the
second part of this paper.
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